LOK JAGRUTI UNIVERSITY (LJU)

INSTITUTE OF ENGINEERING & TECHNOLOGY

Department of Mechanical Engineering (710)

Bachelor of Engineering (B.E.) – Semester – II

Course Code:	017101291
Course Name:	Mathematics - II
Category of Course:	Basic Science Course (BSC)
Prerequisite Course:	Mathematics - I (017101191)

	Teacl	ning Scher	ne	
Lecture (L)	Tutorial (T)	Practical (P)	Credit	Total Hours
3	2	0	5	50

		Syllabus		
Unit No.	Topic	Prerequisite Topic	Successive Topic	Teaching Hours
01	1.1 Elementary row operations of matrices 1.2 Row and reduced row echelon form 1.3 System of linear equations 1.4 Homogeneous system of linear equations 1.5 Non-homogeneous system of linear equations 1.6 Inverse of Matrix (Using Gauss Jordan Method) 1.7 Eigen values & vectors 1.8 Diagonalization of matrix (Only for Non symmetric Matrix) 1.9 Cayley-Hamilton theorem		Linear Programming Problems (017107701-Unit-2)	7 (14%)
02	Fourier Series 2.1 Periodic function 2.2 Dirichlet's condition 2.3 Trigonometric series of sine and cosine function 2.4 Fourier series of a function of period 2L 2.5 Fourier series of even and odd function 2.6 Half range expansions	Basic Differentiation and Integration (017101191- Unit-3)		5 (10%)
03	Fourier Integral and Fourier Transform 3.1 Define Fourier integral 3.2 Cosine and sine integral 3.3 Define Fourier transform 3.4 Cosine and sine transform	Fourier series of a function (017101291-Unit-3)		3 (6%)
04	Power Series 4.1 Classification of singularities 4.2 Series solution near ordinary points 4.3 Series solution near regular singular points (Frobenius method)			4 (8%)
05	Laplace Transform 5.1 Laplace transform of elementary functions 5.2 Differentiation of Laplace transform 5.3 Integration of Laplace transform 5.4 Laplace transform of derivatives 5.5 Laplace transform of integrals 5.6 Unit step function and Dirac's delta function 5.7 Inverse Laplace transform 5.8 Convolution theorem (Without Proof)	Basic Differentiation and Integration (07101191-Unit-3)		8 (16%)
06	Application of Laplace Transform 6.1 Solution of linear ordinary differential equation 6.2 Solution of simultaneous equations (Ordinary Differential Equation)	Laplace Transform (017101291-Unit-5)		2 (4%)
07	Vector Differentiation 7.1 Parametrization of curves 7.2 Orientation of parametric curve 7.3 Arc length of curve in space 7.4 Curvature and surfaces 7.5 Gradient of a scalar point function and surface normal vector 7.6 Directional derivatives 7.7 Divergence of vector field	Basic Differentiation and Integration (017101191-Unit-3)	Motion of Fluid Particles and Streams (017103491 – Unit-9)	5 (10%)

	7.8 Curl of vector field and scalar potential of conservative field		
	Vector Integral-I		
08	8.1 Line integral (Work Done)	Basic integration (017101191-Unit-3), Multiple Integral	 5 (10%)
	8.2 Green's theorem in the plane (without proof)	(017101191-Unit-8)	
	Vector Integral-II		
09	9.1 Surface integral		6
0)	9.2 Gauss divergence theorem (without proof)	Multiple Integral	(12%)
	9.3 Stoke's theorem (without proof)	(017101191-Unit-8)	
	9.4 Volume integral		
	Basic Probability and Statistics		
	10.1 Mathematical definition of probability		
10	10.2 Axiomatic approach of probability		5
10	10.3 Addition law of probability		(10%)
	10.4 Conditional of probability (Baye's theorem)		 , ,
	10.5 Mathematical expectation		
	10.6 Basic introduction of statistics: Central tendency		

	_	•	ractical Evaluation Scheme by Acad tegory Wise and it's Marks Distribu		
L:	3	T:	2	P:	0
Note: In Theory Gro	up, Total 4 Test (T1	+T2+T3+7	Γ4) will be conducted for each subject	et.	
Each Test will be of 2	25 Marks.				
Each Test Syllabus V	Veightage: Range sh	ould be 20)% - 30%		
Group (Theory or Practical)	Group (Theory or Practical) Credit	Total Subject Credit	Category	% Weightage	Marks Weightage
Theory			MCQ	15%	15
Theory	5		Theory Descriptive	0%	0
Theory	3		Formulas and Derivation	10%	10
Theory			Numerical	75%	75
Expected Theory %	100%	5	Calculated Theory %	100%	100
Practical			Individual Project	0%	0
Practical			Group Project	0%	0
Practical	0		Internal Practical Evaluation (IPE)	0%	0
Practical			Viva	0%	0
Practical			Seminar	0%	0
Expected Practical %	0%		Calculated Practical %	0%	0
Overall %	100%			100%	100

Course (Outcome
	Upon completion of the course students will be able to
1	Utilize matrix methods to analyze and solve problems in areas such as structural analysis, electrical circuits, and control systems. Use of Fourier series techniques to solve partial differential equations relevant to heat conduction and wave propagation in engineering systems.
2	Apply Laplace & Fourier transforms to analyze and design control systems & signal system respectively in mechanical engineering.
3	Apply power series and vector calculus concepts to analyze and solve engineering problems in diverse fields such as fluid dynamics.
4	Develop proficiency in the use of Gauss's theorem, and Stokes' theorem for solving practical engineering problems and understand the fundamental concepts of probability, random variables, and probability distributions.
Suggeste	d Reference Books
1	Elementary Linear Algebra, Applications version, Anton and Rorres, Wiley India Edition.
2	Advanced Engineering Mathematics, Erwin Kreysig, Wiley Publication.
3	Calculus, Volumes 2, T. M. Apostol, Wiley Eastern
4	Higher Engineering Mathematics, B.S.Grewal, Khanna Publishers.
5	Thomas' Calculus, Maurice D. Weir, Joel Hass, Early Transcendentals, 13e, Pearson, 2014

List o	Open-Source Software/Learning website
1	https://nptel.ac.in/courses/